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An extrapolating model provides values for thcrmophysical properties when infeasible specifications 
(either pressure or temperature) are recognized at a given iteralion i n  a process simulator, applying an EOS 
technique. The model has a considerable effect on the convergence characteristics, accuracy and robustness 
of a higher level simulation algorilhm. The present paper outlines a strategy for evaluating and comparing 
the abilities of different extrapolating techniques: lo promote the convergence of higher level algorithms; 
to ensure for them a solution, which will be of accuracy, not significantly inferior, to the actual one. The 
latter could have been obtained using for example a dilferent therniodynamic model. 

Organizing thennophysical properties calculittions i n  a process siiiiulator is a 
responsible task as thcy arc prow to coiisuiiic iirouiid 80% of the coiiiputcr timei. In 
regard of this, additional difficultics, appciiriiig i n  the ciise of a n  equation of state 
(EOS), applied to both phases (liquid iilid vapor), arc highly undcsirablc. In EOS 
computations, it is the transition froni regions of x ,  T, P, where thcrc arc thrce voluiiie 
roots, to regions where there is only one voluiiie root that ciin bc vicwcd as responsible 
for convergcnce to a trivial solution2. The trivial solution can intcrrupt the pcrforniance 
of higher level siniulation algorithnis aiid spoil their convcrgciicc i n  the two-phase 
region. Hence, the interest to developing efficient iiiethods to circuiiivent such 
proble 111s. 

As showii by Jovaiiovic and Pounovic3 lhcre arc two tipproiichcs to ensure thc proper 
solution of highcr level siiiiulation algorithiiis: 

- the first is to make good ini t i i i l  ~ ~ t i ~ i i i t t c ~ ~ * ~  or to use i i i i t i i i l  cstiniitlcs, provided by 
stability analysis6; 

- the second is to force 8 satisfactory voluiiic (dcnsity, coniprcssibility) value to be 
generated by the EOS (refs’- 12). 

The second approach has proved to be iiiore reliable. The striitcgics, suggested in the 
literature, apply different tcchniqucs to produce “pscudo”/”artirici;iI” voluiiie values, 

Collect Czech. Chern. Cornmun. (Vol. 57) (1992) 



Iterative Calculations 1425 

once infeasible pressure specificiitions, for a givcn ph;isc, arc recognizcd at  an EOS 
level in the process si1iidiitor. Then this voluiiic villue is used to estiniiite the “pseu- 
dofugacity” coefficients, and if  rcquircd, the rest of the dcrivcd thermodynamic 
properties. Such procedure hereafter will be called a n  “cxtrapoliiting procedure”. 

As shown by Miithias ct. al?  the extr;ipoliitcd thcniiopropcrtics should satify the 
following requirements: should follow the tendency of the rciil oms for the phase speci- 
fied; should be continuous and diffcrcntiiible; should iuiprove the convergence charac- 
teristics of the highcr level simulation algorithms. Howcver, the p a p s  published 
provide little knowlcdge of the strength aiid liliiitiitiolls of thc suggcstcd extrapolating 
strategies i n  the sense of the last requircnicnt. Siiire the iiiftucncc of a n  extrapolating 
iiiodcl on the convcrgcncc charactcristics of it highcr lcvcl S i ~ i i u I i i t i O ~ i  ;ilgorithm is deci- 
sive for its robustncss, a furthcr CXaIiiiliiitioll i n  this dircrtion is justifiiibl~. To facilitate 
it,  a general approach, dcsigncd to eviiluiite i n  ill1 intclligible, quiilititiitive iiianncr this 
important feature of diffcrcnt extr;ipolilting tcchniqucs, is prcsctilcd i n  the manuscript. 
Its tilain charactcristics iirc outlined 011 the exii~iil)lc of the StiiIidiird isothcnial two- 
phase vapor-liquid flilsh problciii, which could be trciitcd iiS il siiiiplc highcr lcvel simu- 
lation algorithni. A brief discussion follows i n  ii Iiitcr scctioii 011 the cx;iniple of the 
bubble point tempcraturc algorithni. 

TI IEOI<ETICAL 

The approach is bascd 011 the cl;issiciil fixed-point theory and its coniicction with the 
contraction-mapping principle since the Iiittcr hiis the potcIitiiil to give insight into the 
convergcnce bchiivior of illgorithliis used for stcady-stiitc siiiiuliition. TO make the 
manuscript more rc;id;iblc, firstly some gcncriil considerations iibout the coniicction 
between a n  algorithm ;ind ii mapping will be given. 

Any computiition;il iilgorithm a t  all ,  cii1i be rcprcscntcd ;IS ii 11iiiI)1)iiig: 

where x E %!’I, y E R” tire thc vectors of thc i n p u t  a n d  output ViilUCS. The itcrative 
calculations are rcprcscntcd as  On, n must bc cquill to m. 

A condition for convcrgence of a fixcd-point itcr;itivc scqucncc, d k + l )  = Q ) ( x ) ( ~ ) ,  is 
given with the contraction-niappiIig thcorciii13. From it  follows that: if Ih,nd < 1 , where 
hlax is the iiiaxiiiiuni Iiiodulus e i g c ~ i v i ~ l ~ ~  of the J;lcobiilIi liiiltrix M I ) ,  thc mapping 0 
is contractive. The coIitr;lctioil-miipping principle CiiIi bc iipplicd to ;iny coniputational 
algorithm to establish whcthcr the fixcd-point itcriitioii sequence converges. To eluci- 
date the idcas the wcll-known isothcrIiiiil vapor-liquid 1l;ish iilgori[hni, biiscd on the 
traditional single loop univariiible ~ i i c l h o d ~ ~ ,  will bc used iis i i i i  CXiiliiplc i n  the present 

It is known tha t  W I K I I  the prcssurc-teiiipcriiturc spcrific;ition is i n  two-phase rcgion a 
physicill (“rciil”) solulioii of thc flilsli problcni exists. Tlic rcprcsciitiitio1i of O I ~ C  itera- 
tion stcp of its algorithni (Chart 1-A), as a tiiiippiIig (I) is given i n  Chiirt 1-B. Let one 

Q , : x - y ,  

study. 
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CHART 1-A 
1. Start with xi a i d  yi. 
2. Coiiipute VL, v", 111 qj-, 111 qy. 
3. Test for convergence 2 (In 

Yes - Stop 
No - Continue with Step 4. 

L/h ')) c Ae,? 

4. calculate K~ - exp (111 r& - 111 qy). 
5. Solve the equation: f(a, K,, K2, ..., KNc) = 0 for the vapor fraction a. 
6. Compute x and y from: 

and go back to Step 2. 
The equatioiif(a, K,, K2, ..., KNc) = 0 might be any of the know11 fonuulations of 
the single loop ui\ivilriuble iaetliods for solviilg the flash problciu, as discussed by 
Ohanomah and Thon~pson'~. 
The acccptcd A,,, = 10-l2. 

CHART 1-8 

I I 
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iiiole of the feed be flashed and let li be the independent viiriiibles. The assuiiiption that 
F = 1 is just for siIiiplificiitio1i and docs not i n  iitiy Wily influence the generality of the 
following conclusions. 111 that CiiSe L = 1- a illid V = a. The choice of the vapor-liquid 
(liquid-liquid) fliish iilgorith1ii iis ~ I I I  cxa1iiplc is 1iiotiviitcd by thc fiict that: firstly, it  is 
used as a coiistituciit part of higher level siliiuliitio1i iilgorith1iis; secondly, it contains 
the volume-finding routine. The latter is where a n  cxtriipoliltiIig procedure might be 
required to provide values for the volu~iie iind the derived properties (for the phase 
specified). 

It is convenient, in our case, to represent the niappiiig 0 of the flash algorithiii as a 
coiiiposition of two iiiappings (as shown 011 Chiirt 1-B) and its Jacobiaii matrix hf@ as 
a product of the Jiicobiil1i matrices of a ~ i d  C D 2  iiiappiugs: 

CI) = 0, 0 a, and M I )  = M(P2 . M(P, . (1) 

The OperiitioIi “coiiipositioii” is reprcsciitcd through tlic syiiibol o in  the above 
expression. 

is thc IiiiippiIig, where ~ ~ t r i i p ~ l i i t i o ~ i ~  Iiiight occur; 0 2  : K -B I, where I, 

= JK,/dlj, where: 

a, : I * K 

The Iiiiitrix of the first 1ii:ippiIig is 
K E @. 

The partial derivatives of the fugiicity cocfficiciits ilrc W C I I  known and widely used 
analytical expressions”. The liiiltrix of the scco~id tiIiippi1ig is MCI) 2= (Jlj/aK,). 

The eleiiiciits of MQ2, when the f~~ictio~iiil dcpciidc~icc /(a$) is the widely-used 
Rachford-Rice for11i~liiIio1i, are showli hereunder: 

XiYi 1 ( ~t:) 
nlij = a(1-a)-- -a i j +  

~j Kj 7 (3)  

where 
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valent, they share the same eigenvalucs. HCIICC, the Iiirgest ~iiodulus eigcnvalue of Ma 
is less than  one as well. Froni here follows directly thiit the iiiiipping CI) is contractive. 

The F l d i  AIgoridim wlien an Exlrrrpol(iiing Procediire is Applied 

In this section we dcnio list rii te how the contraction- m p p i  og principle, discussed above, 
can be used to analyse the coiivergence behavior of a higher lcvcl iilgorithm for steady- 
state calculatioiis after a n  ~ ~ t r i p ~ l i i t i ~ i g  procedure has bccii iipplicd ;it soiiie iteration. In 
particular to clarify whether a n  cxtriipoliiti1ig ~iiodcl is: (i) suitiiblc, i.e. proiiiotes the 
convergence; (ii) reli;ible, i.c. ensures for ii higher lcvcl Siii iuli it iO1i algorithm a solution, 
which will be of accuracy, not significantly inferior, to the “reill” o w .  The “real” solu- 
tion is the fixed poiiit illid i t  iiiiglit be obtiiilicd either ;ipplying ;I iiiixcd tlicriiiodynariiic 
model (e.g. y-9, tiicthod) or using different ii i it i; i l  cstiliiiitcs. 

The primary implic;ition of the discussion i n  tlic previous p;iriigriiph is th i i t  since any 
extrapoliiting procedure ciin bc rcprcsciitcd iis a 1iiiipl)iiig, i t  could be included as a 
constituent piirt i n  a),, i1istciid of the origiiiiil voluiiic-finding routine and the standard 
methods for estim;iting fugiicity coefficients. Thus, (Dl will be trii1isforliicd to a); . The 
latter mnifests the situiition when ;it ii given itcriition step k, for c~a i i ip le  for the 
current V ~ I ~ U C S  of tk), the volume-finding proccdurc fails 10 find ( i i t  tllc spccificd T and 
P) a root of the EOS, corresponding to the equilibriuni liquid phiisc, atid a n  extra- 
polating technique is iipplicd. viilucs for the p ~ c ~ d o ~ o l ~ i i i e  vL’ illid the pScUdOfUgacity 
coefficients I n  rpL’ are ObtiiiIicd, which iire used further 10 cstiniiile Id‘), a, I(k+’). The 
paradigm of the new composite m;ippiog (1)’ is shown on Chiirt 1-C. 

Mapping 4)’ will be coiitriiclivc if the Iiirgcst modulus cigcnviiluc of its Jacobian 
matrix M W  = MOZ . MCI); is less than oiic. However, if the applied cxtriipolatitig 
technique is suitiible, i n  the SCIISC tlliit i t  ensures ;ind promotes convergence of the 
algorithni, @* has to be ii contraction 1iiiIpl)itig. To verify this, the following two-step 
analysis is suggested: 

1. Form the Jacobian iiiatrix M+*: 

where the clenicnts of the niiitrix M(P, (Eg. (3)) iirc ciilruliitcd iiftcr the extrapolating 
procedure has been introduced; tlic C ~ C I I I C I I ~ S  o f  the J;icobi;iti ni;itrix Ma);  (Eq. (2)) are 
calculated, using flk)/dk), the L 1 p ~ ~ ~ d ~ ~ ~ I ~ i ~ i ~ ”  &’ for the liquid phiise illid the vapor 
phase voluiiie vv. 

2. A st;i1idiird procedure, ciilCUliitilig M(D* cigctivalucs, is applied. 
If the largest ~iiodulus eigenvalue of M W  is greater lhiiii one, <I)* is iiot contractive. 

This implies that  the algorithiii is not coiivcrgcnt and the iterates iiiovc away from the 
existing fixed point. Hciicc the exIriipoliitiiig tcchnique is not suitiible since it 

Collect. Czech. Chem. Commun. (Vol. 57) (1992) 



Iterative C.lculrlioar 1429 

influences in an uilacccptable way the convcgcnce pottcrn of a previously convergent 
algorithm. It is reconinicnded to reject it. 

If the lagcst modulus eigenvalue of Ma’ is less thiili onc, the application of an 
extrapolating technique at a given itcntion docs not Iciid to a failure of the flash algo- 
rithm. However, it still could be cithcr rcliablc or unrclirblc. A reliability guarantees 
that the solution of tbc higher levcl siniulrtioti o~gorithnl, o b t i l i d  aftcr an extra- 
polating procedure has bccn trigcrcd, is of accuricy, not significantly inferior to its 
solution, or is in the donuin of the fixcd point. 

To establish whcthcr an extrapolating niodcl is reliable we propose as a criterion the 
quantity 5 : 

Is  - sk - 8k’ . 
hk’ is the value of the iteration stcp, ciilculotcd a k r  a n  cxtrapolrting procedure has 
been used; @ rcprcscnt.. the value of the “rcal” stcp, which could have bccn rcalized by 
the algorithnl if a solution of thc EOS for the voluiiie of the phase spccificd had existed. 

(s) 
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The value of tik could be estiniatcd through a linear ;ipproXiniiition, for which the 
f0 1 lowi 1lg holds: 

For the siniple example of a n  isothcrnial flash algorithm, which 011 the k-th iteration 
requires a n  extrayolaling proccdure for the l iqu id  philsc, the itcriltioll stcp on the inde- 
pendent variables 1 is given with: 

(7) 6:. = A/ I bk+ 1) - bk).  

The "real" step, applying Eq. (6) and iicglccting thc rest of thc Tilylor series " r  ", can 
be estimated as: 

where the partial derivative of the mapping Q) is tiikcti before the extr;ipolating proce- 
dure is used. 

The criterion then acquires the forni: 

(9) P Sl"*-Sl" e. p * l ) - f i k * 1 ) *  
real 

It is applied only once, right after a n  extrapoliititig procedure has bceii required by 
the volume-finding routine. Then i f  

I I I "+ " - ( t r , t " I I  < E ,  ( 9 4  

where 11 111 - wax (Oi , (1 < i c N,) , the extrapolaliiig procedure sludicd is classified as 
reliable and is recouiniendcd to inctude i t  a s  a block in the siructurc of the higher level 
simulation aIgoritbH1. If 

it i s  neocaended to reject t& procedure, since tbe deviation of the solution, which will 
be o b k d  at carvergeace, €mu Ibe "real'' one (fixed point), is not i n  the range of a n  
accepublc (oknmx. 
Tbe k))owing wlaaioa €0, rbe upper bound E is proposed: 
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rithm, is given with a relativcly big nunibcr. The algorilhui, i n  such ciises, is not that 
sensitive to volume extrapolations. In othcr words, evcii ‘‘rough” niodcls can do the 
job. 

To assert or dispel this conjecture, flash calculations for diffcrciit iiiulticoiiiponent 
systems were tried. They were carried out a t  temperatures, bcllow the pseudo-critical of 
the equilibriuiii liquid / vapor phase. It was expcctcd that i n  such ciiscs the convergence 
of the calculations would not be influenced i n  a drastic iiiaiiiier by the type of the 
extrapolating technique applied. A procedure, adopting the volume corresponding to 
the iiiiniiiiuiii/iiiaxiiiiuiii of a n  isolherni, as suggcstcd by Jovanovich et ale3, Gunder- 
sen5, Mills et al.lO, to name a few, was tried. It is one of the iiiost widcly-used and the 
easiest possible to iiiiplement, since a n y  second-ordcr voluiiic finding routine, a t  a n  
infeasible pressure spccification, stops a t  v,~~/v,,,,,. Furthcriiiorc, these values can be 
calculated directly Croiii the EOS (ref.”. Hcrc, for thc siikc of illustration only, the 
example of a flash calcu1;ition for a n  elh;inc-n-hcpl;inc iiiixlurc (niole fraction c2 = 
0.85) run a t  422 K and P = 50 bar will bc briefly prcscntcd. 

Whenever a n  infeasible pressure specification is idcntilicd cilhcr for the liquid or 
vapor equilibrium phase, the corrcsponding voluiiic viiluc is rcquircd from the extra- 
polation model. It providcs eithcr &* = v , , , ~ ~  or vV* = v,,,,,. Thc CviilUiitcd I Ynax/ i n  all 
cases did not exceed 0.237. As a result the flash calc~liitiolis coiivcrge successfully 
with a = 0.9771; K, = 2.037; K2 = 0.2421; $- = 175.73 ctii3//niol; vv = 537.98 c1ii3/1iiol. 

On the other hand when I &l,,,I + l  (as i n  the vicinity of the truc critical point, where 
the convergence of the algorithiii is vcry slow), thc highcr Icvcl iilgorithiii seaiiis to be 
quite sensitive to the rcliiibility of the extrapoliiIing iiiodcl applied. Flash calculations 
were run again, this time a t  tciiiperaturcs, a t  which tlic cquilibriuiii l iquid phase’s 
isotherm were not of the van dcr Wiials type. The “rough” cxtr;ipolating strategy that 
was etiiployed used the only real root that the EOS hiid i l l i d ,  i n  iiiost of the cases, lead 
to the trivial solution. One such cxaniplc is discussed i n  a Iiitcr scrtion. 

The BitbDIe Point Temperatiire Algorithm 

The analysis, outlincd on the exaiiiple of the isothcrliiiil flash calculations, can be 
successfully applied to test the suitability and  rcliability of a n y  cxtrapolating technique, 
itnpleniented in  othcr highcr level simuliition algorithms, biiscd on a n  EOS technique. 
Hereunder the bubble point teiiipcriiture algorithlii will bc shortly discussed. The para- 
digm of the algorithiii (the inner loop on the Ki is included, but a t  T = const) is given on 
Chart 2. 

The Jacobian matrix of the mapping a t  the k-th iteration, whcrc a n  extrapoladng 
technique is requircd, is given: 
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M W  - 
P, a - 0  

The required partial derivatives can bc dctcrrllincd rnulylically: adk + Wa$, discussed 
in the first part of the paper in thc form of its aiirtloguc a(k+l)/dqk) ; 

CtlART 2 

Given P, 1. a = 0. estimate T., 
1 

I I 
the liquid $. VV 

1 parameters 

estimated ona. I n  q# 
1 

I n  p: 

RNC+ 1 

where t is the vector of the indcpendcnl varioblcs. 



Once the partial dcrivativcs ( I l a  - I l d )  arc obtaiiicd, thc iiifluciicc of an extn- 
polating niodcl on the convcqciicc chanctcristics of thc bubblc point tciiipenturc 
calculations con bc studicd sucwssfully, following lhc a~gortithni of thc ptoposcd gene- 
ral analysis. 

RESULTS 

Equilibriuiii calculations for a widcly uscd typical naluml gas mixture arc run to 
dcmonstn tc how an cxt n polat i ng iiiodc I, incorpora tcd in t he isothcriiia I va p or-liq u id 
flash algorithni, is cvalurtcd fmni the view point of Ihc two iiiiportart characteristics, 
discussed in thc papcr. The coniposilion of thc niixturc (in iiiolc fractions) is given i n  
the wrrcsponding tabla. 

The thcrriiodyiiaiiiic iiiodcl uscd is thc SRK CEOS. Thc binary iiitcnction pan- 
nietcrs arc thc rccoiiiiircndcd kij givcn in DECHEMA Chciiiislry Data Scrics": &,? P 

0.0278; k13 P 0.0407; k,, = 0.0763; k , ~  = 0.08; k,, = 0.0878; kr7 = 0.1496; the rcst hj arc 
set cqual to zero. Thc cxtnpolating i i iodcl aiwlyscd is thc oiic su~cs tcd  by Stateva et 
aI.12.  be following points arc studicd: 

Point A. T = 230 K, P = 70 olio. 
Thc point lies inside the two pha.sc bouiidary. Infcasiblc prcssurc spccilicotioiu a n  

recognized at thc 4-th ilcnrlion for thc liquid plusc and llrc block, containing thc extra- 
polating niodcl, is triggcrcd. A "pscudovoluiiic" $.' and tbc "Iwcudofupcity" cocm- 
cients In fl arc providcd. Thcn thc Jacobirn iiirtrix MW is foriiicd and its cigcnvalues 
a n  crlculatcd. Thc following inforniation is obtaiiicd: 
- tbc extmpolating proccdurc is suitablc, siiicc I 
- tbt cxtnpolating prwcdurc is rcliable, siiicc thc rccoiiriirciidcd value of t ,  csti- 

nirtcd according to rclatior (IO), is 5.10" and 11 fik+ ') - 450; I )  11 satisfies condition (94,  
where 1 are given in niolc aunibcrs (Table I). The algorithiii convcqcs at  the 9-lh 
iteration. 

= 0.482; 

Point B. T = 204 K, P = 58 atm. 
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This specification lies in the immediate vicinity of the true critical point of the 
mixture, reported by Michelsen16 to be T, = 203.125 K, P ,  = 58.108 atiii. After the 
extrapolating routine has been executed once, thc following rcsults are obtained:l 
= 0.992; the recoiiiiiiendcd E = 3.10-6. The velucs of fikt’) and ski’), a t  k = 11, and x 
and K a t  convergence, are suniiiiariscd in  Tablc 11. 

When, as a coniparison, a siniple extrapolating techiiique, adopting the only root of 
the EOS as the volunie required, was applied, the flash ciilculations did not converge - 
the iterates nioved away from the solution. 

Point C. T = 204 K, P = 57 atiii. 

TABLE I 
Convergence behavior of the flash algoritlim at T = 230 K, P = 70 atm. k = 4, acollvB = 0.9896, total number 
of iterations 9 

Atom z Kmnvg 

NZ 0.014 2.9419 . lo-’ 2.1573, lo-’ 0.003125 4.5155 
C1 0.943 5.827671, lo-’ 5.629238. 0.600657 1.5759 
c2 0.027 7.55545. 6.13921 . 0.075738 0.3497 

nC4 0.0049 9.6237. 9.18990. 0.093739 0.0423 
nC5 0.0027 1.109944. 1.083512. 10” 0.106995 0.0149 
nC6 0.001 6.50674. 4.91150, 0.062462 0.0056 

c3 0.0074 5.79943. lo4 6.881 13 . 0.057284 0.1200 

TABLe 11 
Convergence behavior of the flash algorithm at T = 204 K, P = 58 atm. k 9, umnVg = 0.7972, total number 
of iterations 38 

Atom z xc,v&! Koonvg 
~~ 

N2 0.014 2.16477. lo4 
C1 0.943 2.6261023. lom2 
C2 0.027 1.786898. 
c3 0.0074 8.77231. lo4 

nC4 0.0049 9.81613. lo4 
nC5 0.0027 8.60667. lo4 
nC6 0.001 4.55975 * lo4 

~~ ~~ 

2.16452. lo4 0.009470 1.5998 
2.6261023. lo-’ 0.903721 1.0545 
1.756552. lo-’ 0.043126 0.5256 
8.77252. lo4 0.016371 0.3127 
9.81613. lo4 0.013557 0.1883 
8.60593. lo4 0.009236 0.1124 
4.55991. lo4 0.003889 0.0683 
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The fliish algorithm, after the “extrapo1;iting” block is triggcrcd scvcriil tiiiies for the 
liquid phiise, coiivergcs successfully. The results are show~i  i n  Tiible 111. The same 
point was tried with diffcrciit in i t ia l  cstiIi1iites and as a result the ;ilgorithm converged, 
no extrapolations rcquircd. The deviation bctwcen the solution, obtained after the 
“extrapolating procedure” has been applied and the one, obtiiincd without such 
intervention, is in the range of the tolcrance, required by thc flash algorithm itself. 

TABU 111 
convergence behavior of the flash algorithm a! T 204 K, P = 57 atni. a,,,vg = 0.8260, total number of 
iterations 53 

N2 0.014 0.008128 1.8741 

c2 0.017 0.050859 0.4432 
c3 0.0074 0.020884 0.2155 

nC4 0.0049 0.018375 0.1 123 
nCS 0.0027 0.012216 0.0570 

Cl 0.943 0.8845 1 .08 

nC6 0.001 0.005 038 0.0297 

CONCLUSION 

The paper has discussed iilid provides a direct way of cstiiiiating q~a11titiiti~ely the 
influence the “ ~ ~ t r i i p o l i i t ~ d  vaIucs” of the thcniiophysiciil propcrlics (required at infea- 
sible pressure spccifications, which iire often occuriag when solving engineering design 
problem)  have 011 the convergence chilrilctcristics of higher I C V C I  S i1 i iUl i i t iOn algo- 
ri t hnls. 

The proposcd striitegics have been iniplcnicntcd i n  iis ii piirt of a general process 
simulator “EQUILIBRIA”’8. The numerical pcrfonuiincc wliich has bcen tested on a 
variety of systcIiis a ~ i d  applications hiis show1i thi l t  the ~ ~ ~ i i ~ ) ~ t i i t i ~ i i i i l  rcquireiiients of  
the iiiethod are quite rcasoiiablc, since i t  includes stitlidiird nunierical procedures 
(matrices a nd vec tor-m t ri x iiiu 1 t i  pl ica t ion, c igc nv;i I ucs cst i liiii lion, c t c.) , providing a 
high degree of rcliiibility for the co~iclusio~is ObtiiiIiCd. The 1)iirtiiil derivatives are given 
as analytical expressions illid their estiliiiitioli requires siiiiple opcriitioils only. 

The suggested gener;il iiniilysis ran by successfully applied to other steady-state 
siniuliitio~~design cillculiitiolis where the isothcrinal vapor-liquid flash, bubble point 
teniperature and ilIlillogOUS algorithm (like the i s ~ ~ ~ t h i i l p i c  fliish c i i l ~ ~ l ; i t i ~ n ,  the bubble 
point pressure algorithm, ctc.) are incorporatcd as  a constituent piirt. 
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SYMBOlS 

fi 
F 
4j 
f i  
4 
L 
M 
Nc 
P 
r 

e 
T 
V 

Y 
V 
xi 

n 
a 
a 
Y 
A 
21 

6' 
e 
A 
cp 
cpc 

k 
L 
V 

Superscripts 

Subcriptr 
c o n y  

min 
Wl 

I M X  

fugacity of the i-tb componcnt 
total numbcr of mola in the fwd 
binary intoraction coelficicnls for the RKs Cms 
equilibrium ratio of tbo i-th component 
mole numbers of the i-tb component in the liquid phase, /i = ~ ( l  - a) 
total numbcr of moles in  the liquid phase, L = x/i 

Jacobian matrix 
total number of componcnts 
specified p m u r e  
residual of the Taylor wries 
n-dinienrional space 
tcmpctatum 
molar volume of the liquid-vapor phase 
mole numben of the i-th coniponcnt in the vapor phafc, vi = fi  a 
total nuniber of mola in  the vapor phrc, V = 2 Vi 

mole fraction of tbc i-th componcnt in  the liquid phaao 
mole Iraction of the i-the component in the vapor phase 
number of mola of the i-th componcnt in the fccd, 
vapor mob fraction, u VIF 
activity coemcicnt 
change in appropriate variable 
criterion, Eq. (5)  
koneckcr delia 
correction to Ck) at iteration it. 
recommcndcd value, Eq. ( J I ) )  

cipavalue 
a mapping 
fugacity coclficicnt of thc i-th component 

= /i + vi 

numbcr of iterations 
liquid 
vapor 
extrapohtcd 

value of a paraniecr at convcrgcncc 
maximal 
minimal 
trw value (obtaincd without extrapolations) 
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APPENDIX 

The equivalence of the iriatriccs Sand Ma) is provcd as follows: s = Q, 0, where: 

dij - V L  (Xi &hi) [qj + (xjyj/zj)/s] 

Analysis of MQ, - Ma,. Ma,  shows that: 
( i)  The rows of MQ,l (sce Eq. (2)) arc proportional to thc rows of the matrix 0, with 

a proportionality coefficicrrt Ki; 
(ii) Tbc colu~rrirs of Ma), arc proportional to the colui~iirs of nratrix 0 with a 

proportionality cocfllcicrrt 1/Kp Furthcrnrorc, thc diffcrcncc bciwccn thc values of the 
elerricnts of Ma2 and thc elenrcnts of tbc nriittix D is givcr by Ibc diffcrcnce between 

When flu, K )  is the Rachfonl-Ricc fornr, thc cxprcssion for s can bc rcwriltcn as: 
s1 and s. 

zi Ki 
1 - z [ l t a ( K i - l ) ] 2  

[U*(Ki - 1) t 2 u -  11 - (Ki - 1) 
[ l  t u ( K i -  l)] 



1438 Tsvetkov, Staleva: 

zi (Ki - 1) 
{u [u (Ki - 1)  + 11 - u + 2u - '}= 

= I: [ l + u ( K i - l ) ] *  

Hence s = - s,. The siiiiic result is obtililicd whcii[(u, K )  is the Bmics-Florcs for~ti'~.  
Taking into considcr;ilion the ;ibovc deriviitions aiid pcrforiiiiny the iiiulliplication of 
Ma, . M+2, proves the cquiviilciicc of ni;ilriccs MQ) ;rod S. 
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