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An extrapolating model provides values for thermophysical properties when infeasible specifications
(either pressure or temperature) are recognized at a given iteration in a process simulator, applying an EOS
technique. The model has a considerable effect on the convergence characteristics, accuracy and robustness
of a higher level simulation algorithm. The present paper outlines a strategy for evaluating and comparing
the abilities of different extrapolating techniques: to promote the convergence of higher level algorithms;
to ensure for them a solution, which will be of accuracy, not significantly inferior, to the actual one. The
latter could have been obtained using for example a different thermodynamic model.

Organizing thermophysical properties calculations in a process simulator is a
responsible task as they are prone to consume around 80% of the computer timel. In
regard of this, additional difficultics, appearing in the case of an cquation of state
(EOS), applied to both phases (liquid and vapor), are highly undesirable. In EOS
computations, it is the transition from regions of x, T, P, where there are three volume
roots, to regions where there is only one volume root that can be viewed as responsible
for convergence to a trivial solution?, The trivial solution can intcrrupt the performance
of higher lcvel simulation algorithms and spoil their convergence in the two-phase
region. Hence, the intcrest to developing cfficient methods to circumvent such
problems.

As shown by Jovanovic and Pounovic® there are two approaches to ensure the proper
solution of higher level simulation algorithms:

- the first is to make good initial estimates®” or to use initial estimates, provided by
stability analysis®;

- the second is to force a satisfactory volume (density, compressibility) value to be
genenated by the EOS (refs” ~ 12),

The second approach has proved to be more reliable. The strategics, suggested in the
literature, apply different techniques to produce “pseudo”/“artificial” volume values,
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once infeasible pressure specifications, for a given phase, are recognized at an EOS
level in the process simulator. Then this volume value is used to estimate the “pseu-
dofugacity” coefficients, and if required, the rest of the derived thermodynamic
properties. Such procedure hereafter will be called an “extrapolating procedure”.

As shown by Mathias ct. al.? the extrapolated thermopropertics should satify the
following requirements: should follow the tendency of the real ones for the phase speci-
fied; should be continuous and differentiable; should improve the convergence charac-
teristics of the higher level simulation algorithims. However, the papers published
provide little knowledge of the strength and limitations of the suggested cxtrapolating
strategies in the sense of the last requircment. Since the influence of an extrapolating
modcl on the convergence characteristics of a bigher Ievel simulation algorithm is deci-
sive for its robustness, a further examination in this direction is justifiable. To facilitate
it, a general approach, designed to evaluate in an intelligible, quantitative manner this
important feature of different extrapolating techniques, is presented in the manuscript.
Its main characteristics are outlined on the example of the standard isothemal two-
phase vapor-liquid flash problem, which could be treated as a simple higher level simu-
lation algorithm. A bricl discussion follows in a later scetion on the example of the
bubble point temperature algorithm.

TIHHIEORETICAL

The approach is based on the classical fixed-point theory and its connection with the
contraction-mapping principle since the latter has the potential to give insight into the
convergence behavior of algorithms used for steady-state simulation. To make the
manuscript more readable, firstly some genceral considerations about the connection
between an algorithm and a mapping will be given.

Any computational algorithm at all, can be represented as a mapping:

P:x—>y,

where x € R, y € K" are the vectors of the input and output values. The iterative
calculations are represented as @% n must be cqual to m,

A condition for convergence of a fixed-point iterative sequence, XD = O(x)®), is
given with the contraction-mapping theorem!d. From it follows that: if Muad < 1, Where
Amax 1S the maximum modulus eigenvalue of the Jacobian matrix Md, the mapping ®
is contractive. The contraction-mapping principle can be applied to any computational
algorithm to establish whether the fixed-point iteration sequence converges. To eluci-
date the ideas the well-known isothermal vapor-liquid [ash algorithm, based on the
traditional single loop univariable method'®, will be uscd as an cxample in the present
study.

It is known that when the pressure-temperature specification is in two-phase region a
physical (“rcal”) solution of the flash problem exists. The representation of one itera-
tion step of its algorithm (Chart 1-A), as a mapping ¢ is given in Chart 1-B. Let one
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CHART 1-A
. Start with x; and y;.
2. Compute v, v, Ingk, In Y.
3. Test for convergence 2 Un(FY/£V)) < A?
Yes — Stop
No - Continue with Step 4.
. Calculate K; = exp (Ingl - Ing@Y).
. Solve the equation: f{a, K, K,..., Kyo) = 0 for the vapor (raction a.
6. Compute x and y from:

—

“» A

yA
X

1
P = W and y = Kixi

and go back to Step 2.
The equation f(a, K}, K5,..., Kno) = 0 might be any of the known formulations of
the single loop univariable methods for solving the (lash problem, as discussed by

Ohanomah and Thompson'®.
The accepted A, = 10742,

CHART 1-B

— 11,..., INC _— v],“': vNc

o Lo

Xpyeens XNg Yiseers YNe
(I)l v v

}
In gk )x ¢
— Kl\
a: f(a’ Kl:"', KNC) = 0

P,

Xpyeees XNe Yisers YNe
L } b

ll""’ [Nc vl,-“) vNc
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mole of the feed be flashed and let /; be the independent variables. The assumption that
F =1 is just for simplification and does not in any way influcnce the generality of the
following conclusions. In that case L = 1- a and V = a. The choice of the vapor-liquid
(liquid-liquid) flash algorithm as an example is motivated by the fact that: firstly, it is
used as a constituent part of higher level simulation algorithms; sccondly, it contains
the volume-finding routine. The latter is where an extrapolating procedure might be
required to provide values for the volume and the derived propertics (for the phase
specified).

It is convenicnt, in our case, to represent the mapping @ of the flash algorithm as a
composition of two mappings (as shown on Chart 1-B) and its Jacobian matrix M® as
a product of the Jacobian matrices of ®; and ®, mappings:

@ = Dy0d, and Mb = MD,. MO, . )

The operation “composition” is represented through the symbol o in the above
expression.
®,: 1 — K is the mapping, where extrapolations might occur; &, : K — [, where /,
K e g\
The matrix of the first mapping is MP, = 9K;/dl;, where:
oK, a(exp(In gt - ng)) angl  angY
ET al =‘(% +0v}

@)
j [ i

The partial derivatives of the fugacity coclficients arec well known and widely used
analytical expressions!S. The matrix of the second mapping is M® 5= (9l/9K)).

The elements of M®,, when the functional dependence f(o,K) is the widely-used
Rachford—~Rice formulation, are shown hercunder:

w1
’nij = a(l_a)_l-]?l(_b'1+_%:——l)’ (3)

where
Z (K -1)
si=01-)y ———
p= )EH+M&AW
Since the pressure-temperature specification is assumed to be in the two-phase
region, the isothermal (lash algorithm has a nontrivial solution and its mapping & must
be contractive. The fatter has to be proved.
Appendix demonstrates that MP and a matrix S arc equivalent. The matrix S,
discussed by Michelsen!® is:
N .
AnKE+D  a(ingk-1ngY) (alnqwi“ dln q)i") ol

s = = = . 4
U aln KV dln KV El JnK; )
n=
Michelsen!® has shown that the largest modulus cigenvalue of S is less than one in
the domain of the vapor-liquid phases cocexistence. Since matrices S and M are equi-

dnm dnm
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valent, they share the same eigenvalues. Hence, the largest modulus cigenvalue of MO
is less than one as well. From here follows dircetly that the mapping & is contractive.

The Flash Algorithm when an Extrapolating Procedure is Applied

In this section we demonstrate how the contraction-mapping principle, discussed above,
can be used to analyse the convergence behavior of a higher level algorithm for steady-
state calculations after an extrapolating procedure has been applied at some iteration. In
particular to clarily whether an extrapolating model is: (i) suitable, i.e. promotes the
convergence; (ii) reliable, i.c. ensures for a higher level simulation algorithm a solution,
which will be of accuracy, not significantly inferior, to the “rcal” onc. The “real” solu-
tion is the fixed point and it might be obtained cither applying a mixed thermodynamic
model (e.g. y—p method) or using different initial estimates.

The primary implication of the discussion in the previous paragraph is that since any
extrapolating procedure can be represented as a mapping, it could be included as a
constituent part in @), instead of the original volume-finding routine and the standard
methods for estimating fugacity cocfficients. Thus, ¢, will be transformed to P} . The
latter manifests the situation when at a given iteration step &, for example for the
current values of /%, the volume-finding procedure fails to find (at the specified T and
P) a root of the EOS, corresponding to the cquilibrium liquid phase, and an extra-
polating technique is applicd. Values for the pscudovolume v-" and the pscudofugacity
coefficients In ¢&* are obtained, which are used further to estimate K®, o, I&*+), The
paradigm of the new composite mapping &° is shown on Chart 1-C.

Mapping @° will be contractive il the largest modulus cigenvalue of its Jacobian
matrix MP* = M®P, . M®] is less than one. However, if the applied extrapolating
technique is suitable, in the sense that it ensures and promotes convergence of the
algorithm, &®° has to be a contraction mapping. To verify this, the following two-step
analysis is suggested:

1. Form the Jacobian matrix M®*:

D° aI'OH 0 &, MDS a,‘(h i 9Ky,
M =( 01}‘ )_Mlz. l_(aKm)((’)’y‘)}
where the clements of the matrix M®, (Eq. (3)) are calculated after the extrapolating
procedure has been introduced; the clements of the Jacobian matrix MP] (Eq. (2)) are
calculated, using ®/v®, the “pseudovolume” v-* for the liquid phase and the vapor
phase volume vY,

2. A standard procedure, calculating Md* cigenvalucs, is applied.

If the largest modulus cigenvalue of Md* is greater than one, d* is not contractive.
This implics that the algorithm is not convergent and the iterates move away from the
existing fixed point. Hence the extrapolating technigque is not suitable since it
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influences in an unacceptable way the convergence pattern of a previously convergent
algorithm. It is recommended to rcject it.

If the largest modulus eigenvalue of M®* is less than one, the application of an
extrapolating technique at a given itcration does not lead to a failure of the flash algo-
rithm. However, it still could be cither reliable or unreliable. A reliability guarantees
that the solution of the higher level simulation algorithm, obtiined after an extra-
polating procedure has been triggered, is of accuracy, not significantly inferior to its
solution, or is in the domain of the fixed point.

To establish whether an extrapolating model is rcliable we propose as a criterion the
quantity A :

K = 8k-0k, )

0% is the value of the itcration stcp, calculated after an extrapolating procedure has
been used; & represents the value of the “real” step, which could have been realized by
the algorithm if a solution of the EOS for the volume of the phase specificd had existed.

CHArT 1-C
—* 11,..., INC > Ve UNe
b b
Xseees XN Yiseer YNe
@} v w
In gt In @Y
TN \ K /
[+ X f(ar Kl"'" KNc) =0
@,
xl,..., ch }’1,---, ch
oo b
e Il""' INc Vi VN
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The value of 8% could be estimatcd through a lincar approximation, for which the
following holds:

k-1
A o Pe)R = 5 +ﬂ%—— (0 = k=) 4 p | ©6)
For the simple example of an isothcrmal flash algorithm, which on the k-th iteration

requires an extrapolating procedure for the liquid phase, the iteration step on the inde-
pendent variables / is given with:

6}" = Al = I(k-'-l)_l(k). (7)
The “real” step, applying Eq. (6) and neglecting the rest of the Taylor series “r ”, can
be estimated as:

(k
8 = Ay = 390 o 2O 0o, ®
where the partial derivative of the mapping @ is taken before the extrapolating proce-
dure is used.

The criterion then acquires the form:

B o= 8- 0f = Mo D-ferD. ?

It is applied only once, right after an extrapolating procedure has been required by
the volume-finding routine. Then if:

[ M- KD < e, (%a)

where || /|| = max(/),, (1 <i<N,), the extrapolating procedure studicd is classified as
reliable and is recommended to inctude it as a block in the structure of the higher level
simulation algorithi. If

oD - B > e (9)

it is recomended to reject the procedure, sirce the deviation of the solution, which will
be obtained at coavergence, from the “real” one (fixed point), is not in the range of an
acceptable tolcrance.

The foowing relation for the upper bound ¢ is proposcd:

e = (1-]00 J (- D), 0)

wieee | AL is the maximmen modulus cigeavatuc of Mér.

In the cascs when the cafculeted | D), | is considerably less than onc, the tolerance
hotween an icration sicp, leading to the fixed point, and a sicp, obtaincd after exira-
polations have bren introduced and leading to an acceplable solution for the flash algo-
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rithm, is given with a relatively big number. The algorithm, in such cases, is not that
sensitive to volume extrapolations. In other words, even “rough” models can do the
job.

To assert or dispel this conjecture, flash calculations for different multicomponent
systems were tried. They were carried out at temperatures, bellow the pseudo-critical of
the equilibrium liquid / vapor pbase. It was expeccted that in such cases the convergence
of the calculations would not be influenced in a drastic manner by the type of the
extrapolating technique applied. A procedure, adopting the volume corresponding to
the minimum/maximum of an isotherm, as suggested by Jovanovich et al.3, Gunder-
sen®, Mills et al.!%, to name a few, was tricd. It is one of the most widely-used and the
easiest possible to implement, since any second-order volume finding routine, at an
infeasible pressure specification, stops at v;./v,.... Furthermore, these values can be
calculated directly from the EOS (ref.). Here, for the sake of illustration only, the
example of a flash calculation for an ethanc-n-heptane mixture (mole fraction ¢, =
0.85) run at 422 K and P = 50 bar will be bricfly presented.

Whenever an infeasible pressure specilication is identified cither for the liquid or
vapor equilibrium phase, the corresponding volume value is required from the extra-
polation model. It provides either v-* = v, or v¥* = v .. The cvaluated | AL, ] in all
cases did not exceed 0.237. As a result the flash calculations converge successfully
with a = 0.9771; K, = 2.037; K, = 0.2421; v* = 175.73 cm¥/mol; vV = 537.98 cm®/mol.

On the other hand when | A, ] —1 (as in the vicinity of the truc critical point, where
the convergence of the algorithm is very slow), the higher level algorithm seams to be
quite sensitive to the reliability of the extrapolaling model applied. Flash calculations
were run again, this time at temperatures, at which the cquilibrium liquid phase’s
isotherms were not of the van der Waals type. The “rough” extrapolating strategy that
was employed uscd the only real root that the EOS had and, in most of the cases, lead
to the trivial solution. One such example is discussed in a later scction.

The Bubble Point Temperature Algorithm

The analysis, outlined on the example of the isothermal flash calculations, can be
successfully applied to test the suitability and reliability of any extrapolating technique,
implemented in other higher level simulation algorithms, based on an EOS technique.
Hereunder the bubble point temperature algorithm will be shortly discussed. The para-
digm of the algorithm (the inncr loop on the K] is included, but at T = const) is given on
Chart 2.

The Jacobian matrix of the mapping at the k-th itcration, where an extrapolating
technique is required, is given:

Coliect. Czech. Chem. Commun. (Vol. 57) (1982)



1432 Tsvetkov, Siateva:

[ Oka’ 1) OVP" 1) 9
vt o7
My -| - an
aT®+h  grk+ D
o0 oT® [P, a=0
L d

The required partial derivatives can be determined analytically: ovi*+ /0¥, discussed
in the first part of the paper in the form of its analogue af*+ /09 ;

CHART 2

Given P, |, a = 0, estimate T*, K

Il""' lNc T Ve VNG

ch# i l 1 1 1

— Xpseees XNc Yirees YN
the liquid v v
parameters 1
estimated once In (p,l‘ In q)iv
at the current T

\Ki /

(T, K,K;, Ky =0

“il»'"l xlNc Yisees YNe
Lo
Il""’ lNc Vl."" VNe
R.Nﬁl
—p t= (V, 7)

where ¢ is the vector of the independent variables.
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iy
ik~ (3} {57) - Sraen: @

aKi/aT is a well known expression;
a:(;(:)” -2 (JZ,) (afr"‘) (11d)

Ounce the partial derivatives (Ila - 11d) arc obtained, the influcnce of an extra-
polating model on the convergence characteristics of the bubble point temperature
calculations can be studicd successfully, following the algortithm of the proposed gene-
ral analysis.

RESULTS

Equilibrium calculations for a widcly used typical natural gas mixture are run to
demonstrate how an cxtrapolating modcl, incorporated in the isothermal vapor-liquid
flash algorithm, is cvaluated from the view point of the two important characteristics,
discussed in the paper. The composition of the mixture (in mole fractions) is given in
the corresponding tablcs.

The thermodynamic model uscd is the SRK CEOS. The binary intcraction para-
meters are the recommended k;; given in DECHEMA Chemistry Data Scries'”: k), =
0.0278; k3 = 0.0407; k,, = 0.0763; k,s = 0.08; k= 0.0878; k,; = 0.1496; the rcst k;are
set equal to zero. The extrapolating modcl analyscd is the onc suggested by Stateva et
al.!2, The following points are studicd:

Point A. T = 230 K, P = 70 atm.

The point lies inside the two phasc boundary. Infeasible pressure specifications are
recognized at the 4-th itcration for the liquid phase and the block, containing the extra-
polating modec), is triggered. A “pscudovolume” v and the “pscudofugacity” coeffi-
cients In @° arc provided. Then the Jacobian matrix MP® is formed and its cigenvalues
are calculated. The following information is oblained:

- the extrapolating procedure is suitable, since | A}, | = 0.482;

- the extrapolating proccdure is reliable, since the recommended value of e, esti-
mated according to rclation (10), is 5.10~ and || A+ V) - &+ 1 || satisfics condition (9a),
where [ arc given in mole numbers (Table I). The algorithm converges at the 9-th
iteration.

Point B. T = 204 K, P = 58 atm.

Collect. Czech. Chem. Commun. (Vol. 87) (1982)
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This specification lies in the immediate vicinity of the true critical point of the
mixture, reported by Michelsen!® to be T, = 203.125 K, P_ = 58.108 atm. After the
extrapolating routine has been exccuted once, the following results are obtained:| Ay,
= 0.992; the recommended € = 3.107%, The values of k*D and A&+ at k = 11, and x
and K at convergence, are summarised in Table II.

When, as a comparison, a simple extrapolating technique, adopting the only root of
the EOS as the volume required, was applied, the flash calculations did not converge —
the iterates moved away from the solution.

Point C. T =204 K, P = 57 atm.

TABLE ]
Convergence behavior of the flash algorithm at T = 230 K, P = 70 atm. k = 4, o, = 0.9896, total number
of iterations 9

Atom z [ [(rtur b Xeonvg Keonvg
N, 0.014 29419, 107 2.1573 . 107 0.003125 4.5155
(ol 0.943 5.827671 . 1073 5.629238 . 107 0.600657 1.5759
C; 0.027 7.55545 . 107 6.13921 . 107 0.075738 0.3497
G 0.0074 579943 . 107 6.88113 . 107 0.057284 0.1200

nCy 0.0049 9.62287 , 107 9.18990 . 107 0.093739 0.0423

nCs 0.0027 1.109944 . 1073 1.083512 . 1073 0.106995 0.0149

nCg 0.001 6.50674 , 107 4.91180. 107 0.062462 0.0056

TaBLE 11

Convergence behavior of the flash algorithm at T = 204 K, P = 58 atm. kB9, a ., = 0.7972, total number

of iterations 38

Atom z fx*n fern Xeonvg Koonvg
N, 0.014 2.16477. 107 216452 . 107 0.009470 1.5998
(o 0.943 26261023 . 107 26261023 . 107 0.903721 1.0545
C, 0.027 1.786898 . 107 1.786852 . 107 0.043426 0.5256
Cy 0.0074 8.77231 . 107 8.77252. 107 0.016371 0.3127

nC, 0.0049 9.81613 . 107 9.81613 . 107 0.013887 0.1883

nCs 0.0027 8.60667 . 107 8.60593 . 107 0.009236 0.1124

nCs 0.001 4.55975 . 107 4.5599%¢ . 107 0.003889 0.0683
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The flash algorithm, after the “extrapolating” block is triggered several times for the
liquid phase, converges successfully, The results are shown in Table III. The same
point was tried with different initial estimates and as a result the algorithm converged,
no extrapolations required. The deviation between the solution, obtained after the
“extrapolating procedure” has been applied and the one, obtained without such
intervention, is in the range of the tolerance, required by the flash algorithm itself.

TasLE II1
Convergence behavior of the flash algorithm at 7= 204 K, P = 57 aim. agyvg = 0.8260, total number of
iterations 53

Alom z Xconvg Keonvg
N, 0.014 0.008128 1.8741
C, 0.943 0.8845 1.08
C, 0.027 0.050859 0.4432
Cs 0.0074 0.020884 0.2185
nC, 0.0049 0.018375 0.1123
nCs 0.0027 0.012216 0.0570
nCg 0.001 0.005038 0.0297
CONCLUSION

The paper has discussed and provides a dircct way of cstimating quantitatively the
influence the “extrapolated values” of the thermophysical propertics (required at infea-
sible pressure specifications, which are often occuring when solving engineering design
problems) have on the convergence characteristics of higher level simulation algo-
rithms.

The proposed strategics have been implemented in as a part of a gencral process
simulator “EQUILIBRIA”'®, The numerical performance which has been tested on a
varicty of systems and applications has shown that the computational requirements of
the method are quite recasonable, since it includes standard numerical procedures
(matrices and vector-matrix multiplication, cigenvalues estimation, ctc.), providing a
bigh degree of rcliability for the conclusions obtained. The partial derivatives are given
as analytical expressions and their estimation requires simple operations only.

The suggested general analysis can by successfully applicd to other steady-state
simulation/design calculations where the isothermal vapor-liquid flash, bubble point
temperature and analogous algorithms (like the isenthalpic Jash calculation, the bubble
point pressure algorithm, cte.) are incorporated as a constituent part.

Collect. Czech. Chem. Commun. (Vol. 57) (1992)
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SYMBOLS
A fugacity of the i-th component
F total number of moles in the feed
kij binary intoraction coefficients for the RKS CEOS
Ki equilibrium ratio of the i-th component

mole numbers of the i-th component in the liquid phase, /; = xi(1 - @)
total number of moles in the liquid phase, L = 21;

Jacobian matrix

total number of components

specificd pressure

residual of the Taylor series

n-dimensional space

temperature

molar volume of the liquid—vapor phase

mole numbers of the i-th component in the vapor phase, v = y; a
total number of moles in the vapor phase, V = E vi

mole fraction of the i-th component in the liquid phase

mole fraction of the i-the component in the vapor phase
number of moles of the i-th componcent in the feed, z = [ + v
vapor mole fraction, a = V/F

activity cocfTicient

change in appropriate variable

criterion, Eq. (5)

Kronecker delia

correction to £*) ai itcration k

recommended value, Eq. (10)

£ H>X " REDPCT AN TS TNRLY VIR

cigeavalue
a mapping
fugacity coefficient of the i-th component
Superscripts
k numbcer of iterations
L liquid
v vapor
¢ extrapolated
Subscripts
convg value of a parameter at convergence
max maximal
min minimal
real true value (obtained without extrapolations)
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APPENDIX

The equivalence of the matrices S and M® is proved as follows: § = & D, where:

@ = (alnql" aln qx")

on anj

dj = VL (x,y,/2)18; + (x;y/2)/s)

S = l-z(xkyk/zk) .

Analysis of MO = M®, . Md, shows that:

(7)) The rows of M®| (sce Eq. (2)) arc proportional to the rows of the matrix &, with
a proportionality coelficicnt K;;

(i)) The columns of Md, arc proportional to the columns of matrix D with a
proportionality cocflicicnt 1/K;. Furthermore, the difference between the values of the
clements of M®, and the elements of the matrix D is given by the difference between
s;and s,

When f{a, K) is the Rachford—Ricc form, the cxpression for s can be rewrilten as:

2[l+a(K-l)|2 E’ 2[Hm(K-l)l2

K

Coliect. C2ech. Chem. Commun. (Vol. 87} (1982)



1438

Tsvetkov, Stateva:

z (K -
2 [1+0.(K ]2[ [a (K - 1)""1] 0-+20.—1}
z(Ki-1a z (K, - 1)

2[1+ot(K--1)] )2[1 a (K- DP "

z (Ki-1)
- '(l'a)z-——[na(Ki—l)]?

Al

Hence s = - s,. The same result is obtained when f{a, K) is the Barnes~Flores form!4,
Taking into consideration the above derivations and performing the multiplication of

Mo, . MO, proves the equivalence of matrices MP and S.
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